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INEXPENSIVE PROGRAMMABLE CLOCK FOR A 12-BIT COW\PUTER 

by James E. Vrancik 

Lewis Research Center 

SUMMARY 

An inexpensive programmable clock was built for a Digital Equipment Corporation 
(DEC) PDP-12. The instruction list includes skip on flag; clear the flag, clear the 
clock, and stop the clock; and preset the counter with the contents of the accumulator 
and start the clock. The clock counts at a rate determined by an external oscillator and 
causes an interrupt and sets a flag when a 12-bit overflow occurs. An overflow can 
occur after 1 to 4096 counts. 

The clock can be built for a total parts cost of less than $100 including power supply 
and I/O connector. Slight modification can be made to permit its use on larger machines 
(16 bit, 24 bit, etc .) and logic level shifting can be made to make it compatible with any 
computer. 

INTRODUCTION 

A computer alone is a useless tool. It has the ability to solve many problems but 
these problems must be described to it and it must be told how to solve them. Thus, the 
engineer must be able to communicate with the computer. Likewise, any computer that 
solves a problem and then keeps the answer to itself is useless. It too must have a way 
of communicating with the engineer. Communication is accomplished by devices such as 
teletypes, line printers, tape readers, etc. To the computer, each device must have a 
name and often two names to distinguish the direction of data flow. Along with a name, 
it must have a means of transmitting data or information. This is accomplished by a 
computer interface. 

This report describes a device called a programmable clock and its computer inter- 
face to a DEC minicomputer, the PDP-12. The theory presented in this report is per- 
fectly general and the clock can easily be interfaced to a different computer with only 
slight, it any, modification. 



There are commercially available devices that can do just what this programmable 
clock does, and more, but they are relatively expensive. The purpose of this work is to 
overcome the cost barrier and develop a very inexpensive interval timer that can be pro- 
grammed by the computer. The design of the clock itself is relatively straightforward, 
but the design of the interface between the clock and the computer is more complicated 
and is considered in detail in this report. 

COMMUNICATION TECHNIQUES 

There are two popular fundamentally different techniques used to communicate with 
a computer. The first mode can be called the wait mode. It involves giving a device a 
command and then waiting until the command has been executed and the results are 
available. For instance, if the computer were programmed to take a voltage measure- 
ment, it could issue a command to the voltmeter to begin taking a reading. The com- 
puter would then enter a mode that would continuously monitor a “done flag” (flip-flop), 
which would be set by the voltmeter when it had completed its analog to digital conver- 
sion. When the done flag is set, the data are ready and the computer would then read 
the voltmeter and clear the flag. This straightforward technique for servicing devices 
makes the software very simple. The problem is most input-output (I/O) devices are 
extremely slow compared to the computer speed, and thus a lot of computer time is 
wasted. 

The second mode of communication is the interrupt mode. In this mode the com- 
puter again issues a command but does not wait for execution. Instead, it may continue 
to execute other instructions. When the device is done, it calls the computer by setting 
the done flag, which grounds the interrupt bus. When the computer senses that the in- 
terrupt bus is grounded, it realizes that a device is trying to get service, and it goes 
through a software routine to determine which device is calling and how to service it. 
In the example of the voltmeter, the computer would issue a command to take a reading 
and then continue doing other jobs. When the voltmeter finished its conversion, it would 
set its done flag and ground the interrupt bus. The computer would realize it was being 
called. It would remember what it was doing and begin monitoring all the device done 
flags until it came to the voltmeter flag. It would realize the voltmeter was the one 
calling and service it and then return to its interrupted job. The software for this type 
of device servicing is much more complicated but well worth it for saving computer 
time. The interrupt mode capability can be turned on and off by software. The actual 
mechanics of the interrupt are discussed in the section on the clock programming. 



Op-Code 

The word length for the PDP-12 is 12 bits. The easiest way of discussing the word 
is to divide it into four groups of 3-bits each, with each group an octal number. Thus, 
instead of 010111001011, we have (2713)8. The first octal number is the op-code. 
Therefore, there are 8 op-codes. Op-codes 0 to 5 are instructions like add, jump, 
deposit, etc., op-code 6 is used exclusively for I/O instruction, and op-code 7 is for 
instructions that require no address like shift, skip, halt, complement the accumulator, 
etc. Here we will confine our discussion to op-code 6, the I/O op-code. The next two 
octal numbers are the name of the device being referenced. In this particular case, the 
programmable clock’s name is I38 so an instruction 613X is an I/O instruction refer- 
encing the programmable clock. The last octal number (X) is used to generate pulses 
that permit the actual communication between the computer and the device. 

These pulses are called IOP pulses or input-output pulses. If the pulses are actually 
used by a device, then they are renamed IOT pulses or input-output transfer pulses. 

Device Selector 

The logic required to use the IOP pulses to communicate is called a device selector. 
The two middle octal number (and their complements) of the memory buffer (12 signal 
lines) are brought out of the computer to each device. Six of the 12 lines are connected 
to the device selector giving the device a unique name (number) (see sketch). 

1 3 5 

/vMA 
1100 0 101 110 1 

Bit 0 1 2 3 4 5 6 7 8 ,9 10 11, 
ITO IOPS 

Op-code 

- - 
If the signal lines 3, 4, 5, 6, 7, and 8 are AND’ed together and the output is used to 
enable gates, those gates will only be opened when device 13 is called. 

Figure 1 shows a typical device selector. If the 6 input AND gate are assumed 
wired to select device 13, then the three succeeding AND gates will be enabled during 
this I/O instruction. 
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buffer 

From 
computer 
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Op-code 6 Device 13 Will generate IOP; 
Bit pulses if corre- 

f-3’ spending bit is 1 

Device 
select 

High only if this is 
device being called 

IOP 1 
(High if bit 11 high) 

IOTl , Skip request 

To 
[computer 

Figure L - Device selector. 

Typically, but not necessarily the IOP 1 pulse is used to generate a skip pulse to 
set the skip flag if it was actually this device that was calling the computer. Also typ- 
ically the IOP 2 pulse is used to clear the flag within the calling device. The IOP 4 pulse 
can be used for other purposes depending on the application. The device itself sets its 
own flag when it wants to be serviced. 

The software that would be used to communicate would be something like this. If 
the software program was written in the wait mode and the computer was waiting for a 
response from the device, then the instruction would be 

6131 /skip on flag, or skip the next instruction if the flat is set 

Jump up one /jump to the instruction preceding this one 

Service device 13 /d evice 13 finally set its done flag and can now be serviced 

If the software is in the interrupt mode, the interrupt capability is turned on, and when 
device 13’s flag is set, an interrupt request line is pulled to ground and the program is 
interrupted. The computer finishes the current instruction, automatically stores the 
address of the next instruction in location 0000, turns the interrupt off, and goes to lo- 
cation 0001 for its next instruction. The program at this point would resemble the fol- 
lowing: 

0000 0000 /will contain the address of the next instruction before 
the interrupt 
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0001 Skip if flag 1 

0002 

0003 

0004 

0005 

0006 

0007 

Skip 

Jump device 1 service routine 

Skip if flag 13 /skip next instruction if flag 13 set (6131) 

Skip 

Jump device 13 service routine 

etc. 

/skip next instruction if flag 1 set (6011) device 1 is 
some other device in the system 

(Device 13 service routine) 

0200 6131 /clear the flag 

Service device 13 

Turn interrupt back on 

Jump back to program being executed before interrupt by using location in 
0000 as link 

Programmable Clack 

The general scheme of the programmable clock is shown in figure 2. An I/O preset 
pulse or an IOT 2 pulse clears the flag, resets the on-off switch, and clears the counter. 
The pulse is actually the output of a one-shot that is triggered by any convenient gen- 
erator. In programming, the usual techniques would be to issue an IOT 2 (6132), load 
the accumulator with the two’s complement of the number of pulses desired before an 
overflow occurs, and then issue an IOT 4. The IOT 4 opens the gate between the ac - 
cumulator and the preset terminals of the counter for 500 nanoseconds. This presets the 
counter. The IOT 4 also turns on the on-off switch allowing the oscillator pulses to be 
counted by the counter. If in the wait mode, the computer continuously issues IOT l’s 
until an overflow occurs, and the flag is set allowing the IOT 1 to set the jump flag. If 
in the interrupt mode, when the flag becomes set the interrupt request line is grounded 
and an interrupt will occur. Interrogation of the flag by an IOT 1 will indicate the clock 
has caused the interrupt and may be reset if desired. In either case, an IOT 2 should be 
issued to clear the counter, reset the flag, and stop the counter. If the flag is left set, 
it will give a false indication of an interrupt if the interrupt is turned on or if an IOT 1 
is issued. 
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Figure 2 - Programmable clock block diagram. 

DESIGN DETAILS 

The engineering schematics used to describe the device are the following: 
(1) Device selector and IOT generator 
(2) Preset data gate 
(3) Counter 
(4) On-off switch, done flag, clock pulse generator 
The numbers close to the terminals of the integrated circuit (IC) gate are the pin 

numbers and numbers such as 2 AC and c indicate the second AND gate IC (actually 
NAND) and the third NAND within the IC, respectively. Actually, c is redundant since 
the pin numbers specify the exact gate. 

Device Selector and IOT Generator 

The complete device selects and IOT generator is shown in figure 3. The output of 
inverter 21d is high only when the device 138 is called. This enables the three NAND 
gates 5Aa, 5Ab, and 5Ac. Thus, when an IOP 1 or IOP 4 pulse occurs, they become 
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Device 13 IOT 1 Skip on flag 
Clears counter 

Memory buffer IOT2 Clears flag 

0 3L 
Stops counter 

N15 Hl 
IOT 4 

Presets counter 
Starts counter 

N15 K2 

N15 P2 

N14 K2 

N14 M2 

N14 V2 

N14 P2 

Figure 3. - Device selector and IOTgenerator. 

IOT 1 and IOT 4 pulses which communicate back to the computer or to the device. An 
IOT 2 pulse occurs when either input (pin 12 or 13) to 5Ad goes low. Pin 13 goes low if 
an I/O preset pulse occurs. An I/O preset pulse is generated by a pushbutton on the 
computer console to initialize all I/O devices before starting. Pin 12 can go low if de- 
vice 13 is being called and an IOP 2 occurs. 

Additional inverters were used to accommodate fanout requirements for the IOT 2 
and IOT 4 lines. 

Preset Data Gate 

The preset data gate is shown in figure 4. The IOT 4 puIse opens all the preset 
gates lA, 2A, and 3A. If any input line is high, the output will be low and will preset the 
appropriate bit in the counter. The most significant bit in the computer is numbered 
bit 0. I chose to number the most significant bit in the counter number 11. 

Numbers such as N14H2 are computer numbers and refer to the DEC-PDP-12. 
Row N, column 14 specifies the card location in the computer and pin B, side 1 specifies 
the pin location on the card. 
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Data gate 

IOT4a 
To JK 

IOf 4b 

Figure 4 - Preset data gate block diagram. 

Counter 

The 12-bit counter is shown in figure 5. 
separate four-bit counters. 

The counter is actually three completely 
The first flip-flop (FFl) changes state each clock pulse. 

The second flip-flop changes state only when the first flip-flop is one. The third 
changes state only when the first and second flip-flops are one, and the fourth flip-flop 
changes state only when all three previous flip-flops are one. 

Each of the three four-bit counters has a one’s detector that changes state if all 
flip-flops within that counter are one. These one’s detectors are used to enable the 
clock pulse to get through to the next four-bit counter. Thus, the second four-bit counter 
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IOT 2a I 1 
1 

- IOT 2b 

Figure 5. - Counter. 



gets a clock pulse only when the first four-bit counter overflows. This is described in 
detail in figure 6. 

On-Off Switch, Done Flag, Clock Pulse Generator 

The on-off switch in figure 6 is a bistable flip-flop that enables NAND date 4Ab 
when on. The IOT 4 pulse turns the switch on and IOT 2c turns it off. If NAND gate 
4Ab is enabled (on), the clock pulses from the one-shot OS1 can pass through. The 
pulse width is approximately 500 nanoseconds. 

The clock pulses will set the done flag FF 12 if the input gates are enabled. This 
happens if all the bits in the counter are one which sets the one’s detector to the proper 
state. When the done flag is set, two things happen. The interrupt request bus is 
grounded, and if the interrupt routine is enabled, an interrupt will occur. Also, the 
skip bus NAND gate 4Aa will be enabled so an IOT 1 pulse can get through to the com- 
puter to cause a skip. This skip in the computer program will identify the calling device 
as the clock. The computer program should then issue an IOP 2 which will clear the 
done flag and remove the interrupt request bus ground. 

The clock pulse generator consists of three one-shots. The first one-shot is trig- 
gered from a discrete wave-shaping network of a transistor, diode, and two resistors. 
Each time the input goes negative, the one-shot will generate a 500-nanosecond pulse. 
Therefore, the one-shot will pulse at the same rate as the frequency of the input voltage. 

The clock pulse generator has an input impedance of 22 kilohms and can tolerate and 
use any oscillator voltage from *2 to *lo0 volts. The rise time on the- input should be at 
least 1 volt per second. The clock has been tested over a frequency range from 1 hertz 
to 500 kilohertz. 

If the on-off switch is on, the output of one-shot OS1 is used as the clock pulse for 
bits 0 to 3. It is also used to strobe the input gate of OS2. The input gate to OS2 is 
enabled. if bits 0 to 3 are on. Under this condition, the next pulse that comes from OS1 
will produce an output pulse from OS2. In effect, OS2 fires only when there is an over- 
flow from bits 0 to 3, and this pulse is used as the clock pulse for bits 4 to 7. 

Similarly, the clock pulse for bits 4 to 7 is used to strobe the input gate of OS3. 
The OS3 is enabled if bits 4 to 7 are on. Since a clock pulse for bits 4 to 7 occurs, only 
when bits 0 to 3 are on, the effect is OS3 pulses only when there is an overflow from 
bits 0 to 7. 
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clock pulse generator 
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Zero only if 4 to 7 one 
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Figure 6. - On-off switch, done flag, clock pulse generator. 



RESULTS 

This clock was built and tested on a DEC PDP-12 computer and was found to operate 
correctly as designed. A parts list is included in tables I and II along with a price list 
of all components. The total price of the clock parts was less than $100. All IC logic 
elements are TTL. The clock was designed with minimum cost as a prime objective. 
The fact that every gate (total of 55) in every IC was used demonstrates the gate effi- 
ciency of the design. 

The counting rate is determined by the frequency of an external oscillator. Each 
cycle increases the count by one. The counter will overflow and give an interrupt after 
one to 4096 counts, depending on the programmed preset. 

A simple extension of the number of flip-flops and preset gates will extend the num- 
ber of bits to any size computer, and level shifting will adapt it to computers not TTL 
compatible. 

TABLE I. - INTEGRATED CIRCUIT COSTS 

lIntegrated 
circuit 

P qumber 
used 

5 2 input NAND 4 
2 Diverter 6 
1 2 input NAND 3 
2 4 input NAND 2 

13 JK flip-flop 1 
3 One -shot 1 

Name 1 Number of 
gates per 
integrated 

circuit 

Total 
number 
of gates 

TABLE II. - TOTAL COSTS 

Integrated circuits 

Power supply 

Digital Equipment Corporation 
plug in cards 

Transistor, diode, resistors 

Mounting board, wire, etc. 

$52.79 

29.00 

12.00 

20 
12 

3 
4 

13 
3 

55 

1.00 

4.00 
$98.79 

cost Total 
each cost 

61.86 
1.55 
1.24 
1.54 
1.97 
3.46 

$ 9.30 
3.10 
1.24 
3.16 

25.61 
10.38 

$52.79 

12 NASA-Langley, 1972 - 8 E -6589 
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